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Abstract
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one spring in the modelled system.
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I. INTRODUCTION

Simulation of a physical system with an electrical circuit a�ords the experimentalist

control over the parameters of the system that are nearly as good as in a numerical simulation

and at the same time provides insight into the behavior of data analysis algorithms with real

experimental data. Typically, output from a circuit simulation is also low noise. This allows

the analyst to concentrate on the analysis of the data and method without the additional

problem of dealing with noise.

Here we develop an 8-oscillator circuit simulation of a spring-mass damper system. We

simulate incremental changes in sti�ness to one spring near the �xed end of the system

and force the circuit at the opposite end with a Lorenz signal. The system acts as a linear

�lter of the signal; this linear �lter changes with changes in sti�ness. It has been shown

both theoretically (see, e.g. [5], [12]) and experimentally ([1, 9]) that in some cases (e.g.

IIR �lters) the �ltering of a chaotic signal changes the dimension of the attractor that

is reconstructed from the signal. Todd, Nichols et al showed that it is possible to extract

various features from the reconstructed attractors from chaotically forced structures in order

to detect damage ([7, 14]). Here, we test the limits of detection by attempting to detect very

low levels of damage in only one location in a structure. We introduce a new statistical test,

based on the continuity test of Pecora, Carroll and Heagy [10] to detect geometric changes

in the reconstructed attractors and test to see how this statistic scales with the level of

damage.

In our experiment we record the output at each oscillator and use multivariate time-series

analysis to embed the time series from various change scenarios. We note that although

previous multivariate embedding methods were tailored to time series that were weakly

coupled ([4]), here we use very strongly coupled time series, a result of the forcing of the

structure. We develop strategies for �nding the dimension of the embedding using a series

of false-nearest-neighbor tests.

Our statistical test determines if there is evidence that a continuous map exists between

the reconstructed attractor from a baseline system to that of each change scenario. Using

this test, we are able to detect a 2% change in sti�ness from the baseline scenario. We

also observe incremental changes in the statistic that parallel the incremental changes in the

circuit.
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FIG. 1: 8 degree-of-freedom Spring Mass System

II. EXPERIMENTAL DESIGN

In order to test damage detection algorithms in a controlled and well characterized system,

we built a simple analog electronic circuit to simulate a set of masses connected by springs

(see �gure 1). The circuit consisted of 8 underdamped oscillators coupled in a line. We

based the oscillator circuits on the following model:

dxi
dt

= �iyi

dyi
dt

= ��y[(2yi � yi+1 � yi�1) + �(2xi � xi�1 � xi+1)] (1)

The average time constant �i for the 8 oscillators is 104s, but the individual �i's vary by

20% from this average to simulate variations in the object being tested. The other time

constant, �y, is constant at 104. Damage is simulated by changing the sti�ness constant �

from its normal value of 1, while the damping constant  is set to :05.

The circuit for one oscillator is shown in �gure 2. The value of xi is measured at the

location marked X, and yi is measured at Y . The oscillator time constants are �i = 1=R�iC,

where C = :001�F and R�i is given in table 3. We simulate damage by increasing the

values of Rx(i+1) and Rx(i�1) from their normal values of 10k
. The signals from the other

oscillators are input at the coupling points indicated.

We are simulating an array of masses and springs where one end is �xed and the other

end is driven. The driven oscillator is oscillator 7, while the oscillator at the �xed end is

oscillator 0. To simulate the �xed end, we set x�1 and y�1 equal to 0. At the driven end,

x8 = 0 and y8 (the driving signal) is a computer generated Lorenz signal.
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FIG. 2: Single underdamped oscillator circuit used in the experiment. Rx(i+1) and Rx(i�1) have

nominal values of 10k
, but their values can be increased to simulate damage. Ry(i�1) = 200k
,

R1 = 10k
, R2 = 50k
, R3 = 100k
,R4 = 1M
, R5 = 100k
, R6 = 100k
, C = 0:001�F . R� is

given in Table 3. All resistance values are � 1%.

The Lorenz system used to generate the driving signal is

dx

dt
= 16(y � x)

dy

dt
= 45:92x � xz � y (2)

dz

dt
= xy � 4z

These Lorenz equations are numerically integrated with a 4th order Runge-Kutta routine

at a time step of .002. The Lyapunov exponents for this Lorenz system are 1:5s�1, 0 and

�22s�1. The Lorenz x signal is played back through a digital to analog converter at 110,000

points/s to form the driving signal. At this playback rate, the Lyapunov exponents for the

Lorenz signal are multiplied by (110,000 points/s)/(500 points/s) so the new set of Lyapunov

exponents are 330s�1, 0 and �4840s�1. These numbers may be compared to the real parts

of the �rst 3 eigenvalues for the undamaged circuit(measured experimentally) of �123s�1,

�149s�1 and �250s�1.

The signals from the driven oscillator array were digitized at 22,000 points/s.
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i 0 1 2 3 4 5 6 7

R�i(K
) 121 100 80.6 90.9 121 110 110 90.9

FIG. 3: Values of Resistor R�i for di�erent oscillators.

III. THE SKEW-PRODUCT SYSTEM AND STRUCTURAL RESPONSE TO

CHAOTIC EXCITATION

The driven system we describe in section II is a particular skew-product that arises

from the �ltering of a dynamical system. Here we o�er a characterization of these systems

which will lead to the geometric test for damage in the circuit. Much of this background

information is covered in Davies and Campbell [5], and we follow their notation with minor

changes for clarity.

Consider a nonlinear function f : X ! X, where we are interested in the evolution fn(x)

of points x 2 X, for n 2 Z . After a period of transient behavior, the iterates of x under f

settle into the attractor of f in phase space.

Now consider applying a linear �lter to a nonlinear function. Let the linear �lter be the

matrix B. Let X 2 <m be compact and let the nonlinear function be f : X ! X be written

as xn := fn(x) Thus, we have the following slaved dynamical system:

yn+1 = Byn + xn

xn+1 = f(xn) (3)

The input function is unchanged by the �lter. However, the slaved system fyng, is

determined by the �ltering of the base signal fxng (the drive signal). This is an example of

an In�nite Impulse Response (IIR) �lter; the series yn is a�ected by the entire time history

of y. In practice, the dynamical system f is not directly observable; we instead have an

observation function H : X ! <p. The function H can be thought of as an appropriate

coupling function.

The stability of any dynamical system is described by its Lyapunov exponents. In the

case of a linear function, the Lyapunov exponents are the logarithms of the moduli of the

characteristic values (i.e. the characteristic exponents). We say that such a system is stable

if all of the characteristic values lie inside the unit circle. In the case of an IIR �lter, as
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long as B is stable, the Lyapunov exponents of the IIR �lter are simply the characteristic

exponents of B together with the Lyapunov exponents of f (see, e.g. Davies and Campbell

[5]). In a practical situation, all �lters provided by linear structures are stable.

Now we can de�ne the skew product system F on the entire spaceX�<p by the following:

F (x; y) = (f(x); By +H(f(x))) (4)

We have ful�lled the criteria for lemma 1 of Davies and Campbell [5]. Thus, there exists a

continuous function � such that the graph of � represents an unique, globally attracting F -

invariant manifold. The function � is a consequence of the skew product and of the stability

of the �lter B. In our case, the attractor given by the Lorenz function is not a manifold.

However, we may still de�ne the function � in the same way. Although we cannot expect

that (x; �(x)) will be a manifold, we can still consider it as an F -invariant geometric object.

Now suppose that we �lter the chaotic function f through two di�erent structures, each

yielding a stable linear �lter. Given these two di�erent stable linear �lters, B1 and B2 of the

same chaotic input signal, we may construct functions �i in the same manner as �, above.

We then have two di�erent geometric objects, the graphs of �1 and �2 which represent the

two skew product systems, call them Y and Z, respectively.

It is natural to de�ne a map between Y and Z using the drive space X and the represen-

tation of each point in Y as (x; �1(x)) and each point in Z as (x; �2(x)). Thus, we present

the following. Let 	 : Y ! Z be de�ned by

	(x; �1(x)) = (x; �2(x)) (5)

This function is well-de�ned because of the projections on Y and Z which take (x; �i(x))

to x 2 X; because the �lter is linear, the functions �i are one-to-one. We are interested in

properties of the function 	. In particular, this function shows the relationship between the

two geometric objects given by the graphs of the functions �i.

We would like to develop tests which indicate di�erences between (time-series reconstruc-

tions of) Y and Z which arise because of di�erences in the �lters B1 and B2. Changes in

the linear �ltering of the input signal will indicate changes in the structure itself.

In an experimental setting, a time series of measurements of some function of the �ltered

signal is the only available quantity. In this case, the attractor can be reconstructed using a
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FIG. 4: Points from the Æ-ball on the left map to the �-ball on the right

time-series of the observed quantity i.e. a time-delay embedding. It has been shown that the

reconstructed attractor is a faithful representation of the original attractor [11]. Because we

force our structures with an identical signal, the function 	 can be constructed implicitly

by mapping a time-delay coordinate from the reconstruction of Y to the corresponding (by

time) time-delay coordinate in the reconstruction of Z.

We now turn to description of the particular test we use for the changes in 	.

IV. THE TEST FOR STATISTICAL CONTINUITY

Given time-delay embeddings of two di�erent geometric objects reconstructed from time

series data, it is often important to �nd a functional relationship between the two objects.

For instance, in the presence of noisy data from the reconstruction of one object, can we

say if it is essentially identical to another object? Proving or disproving the existence of a

continuous function between two such objects can be a powerful tool for analysis of nonlinear

behavior. Given a proposed function F : X ! Y the mathematical de�nition of continuity

at a point x(t) 2 X is stated as follows: For all � > 0, 9Æ > 0 such that if kx(ti)�x(tj)k < Æ,

then kF (x(ti)) � F (x(tj))k < �. The geometric meaning of this statement is illustrated in

�gure 4.

If we let the input to the function be designated as the source and the output designated
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as the target, then for an arbitrarily small set in the target, a set in the source can be found

for which all points map to the set in the target. Thus, we see that points that are close

to each other in the source map to points that are close to each other in the target. The

'closeness' is the relationship between Æ and �.

For a theoretical geometric object the analytic de�nition is clear. However, translating

the mathematical �� Æ de�nition of continuity to a time-series reconstruction setting raises

two important questions:

1. How can potentially noisy, �nite data yield a reasonable de�nition of continuity either

at a point or on an entire geometric object?

2. How can such a de�nition be translated to a meaningful and reliable statistic regarding

the absence or presence of a continuous function?

Three clear problems appear when considering continuity in the context of �nite data.

The �rst is that � cannot be made to go to zero. Thus, some �nite but small � that still

indicates continuity will have to be determined. Moreover, for some x, there may be � for

which Æ can be found even if there is no continuous F . Secondly, only a �nite number of

points x 2 X can be checked for continuity. Lastly, in the presence of noise, even for an

obviously continuous F (e.g. an identity function), all points from a Æ-ball may not map to

the corresponding �-ball. For example, see �gure 5. These issues cannot be ignored, but we

can create a statistical criterion for continuity that is consistent with the �� Æ de�nition.

We begin with two time series reconstructions, denoted Y and Z. The space Y will be

denoted the source, Z the target (or image). We formulate the continuity test as follows.

Theoretically, we would choose an � as in the formal de�nition. We �nd the �-ball

around the point z in the space Z. We then take progressively smaller Æ-balls around the

corresponding point y 2 Y that maps to z 2 Z until all of the points in the Æ-ball are

mapped into the �-ball. However, because of the above issues, we need instead to apply a

statistical criterion which will reject or accept the Æ-ball as passing the continuity test for

this �. For this, we formulate a null hypothesis.

The null hypothesis assumes that for any point y(tj) in a Æ-ball the corresponding point

z(tj) has a probability :5 of being in the �-ball, regardless of the size of the �-ball. If n points

are in any Æ-ball, the probability of m or more of these points' images in the �-ball must be

< :05 to reject the null hypothesis.
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FIG. 5: An � and Æ may be found but � may be large. Noise may force some points from the Æ-ball

to be outside the �-ball.

The null hypothesis essentially assumes that points from the given Æ-ball map to points

in the �-ball by a coin ip. In order to reject the null(equivalently, to accept the Æ-ball as

passing the continuity test for this �), the probability must lie in the tail of the binomial

distribution. Thus, we must have 95% con�dence that the points from the Æ-ball did not

map to the � ball by chance.

This di�ers from the null hypothesis described in [10]. To account for noise, our null

hypothesis allows some points from the Æ-ball to map outside the �-ball. However, we require

that enough points m from the Æ-ball map into the �-ball to insure that the probability of

m or more points landing in the �-ball by chance (noise) is low. Hence, the possibility that

noise can produce evidence of continuity is negligible.

We formulate the statistic to be based not on the acceptance or rejection of the null

hypothesis, but on the minimum � that can be used to reject the null hypothesis at each

point. We call this value �*.

To compute the continuity statistic, N test points y(ti) are chosen at random times from

Y . This serves to also distribute the points randomly in space. In our implementation, the

data are normalized so that the standard deviation of the attractor is � = 1. For each test

point, initially � = Æ = 3�. The number of points in the Æ-ball around the representative

point y(ti) is n. Image points in the ball centered around the point z(ti) are counted; this
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number is m. Then the binomial distribution with parameters (n; :5) is computed to �nd the

cumulative probability of �nding m or more image points in the �-ball. If this probability is

< :05, the null hypothesis is rejected for this point and � is recorded as �*. Then � is reduced

with the same Æ. If the null hypothesis is not rejected, Æ is reduced. To maintain the 95%

con�dence interval, there must be at least 5 temporally non-correlated points in the Æ-ball.

If no � can be found with any acceptable Æ, we increase the initially allowed � until �* can

be found for all points. Note that �* for each point represents the smallest � for which the

null hypothesis is rejected. The average and distribution of �* is recorded, along with the

maximum Æ for each �*.

To detect di�erences in geometric structures using the continuity test, we compare both

the average �* and the distribution of �* for the set of representative points. For comparison,

we compute the continuity statistics for a known functional relationship in order to see the

smallest possible � ; call this value �0. If �� � �0 for a particular test, it is clear that any

functional relationship between the source and target attractors is in question. If �* is close

to �0, we examine the distribution for the tests in question and for the known relationship to

detect either degradation of a functional relationship or evidence that a continuous functional

relationship persists.

For example, if we are testing for continuity of the function 	 described in section III,

we �rst �nd �* values for a function between the attractors reconstructed from two sets

of output from an identical undamaged circuit. We call this value �0. We may de�ne the

function 	 between reconstructed attractors based on the input signal x as in the de�nition

5. The prerecorded input signal allows us to treat all sets of output data as if they were

recorded simultaneously from the same input signal.

We note that ultimately the test on our experimental data will be performed not on the

actual geometric object, but on an attractor reconstructed from time series. Thus although

theoretically the function 	 from equation 5 is continuous because it is the composition of

continuous functions, we observe that loss of di�erentiability in a discrete function mimics

the loss of continuity (see �g 6). In this case, it may not be possible to tell if the continuity

test indicates that the continuity or the di�erentiability of the functional relationship changes

with damage. In either case, changes in �� point to changes in the �ltering of the chaotic

signal.

We emphasize that the continuity statistic is a one-sided statistic. Thus, evidence of a
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FIG. 6: Loss of di�erentiability may mimic loss of continuity. For the given �-ball, there is no

Æ-ball for which all points map to the �-ball.

continuous functional relationship 	1 : Y ! Z does not imply existence of a continuous

function 	2 : Z ! Y . In practice, we compute the continuity statistic using source Y and

target Z and then compute the statistics using source Z and target Y . These statistics are

considered separately, but we note that in our tests, the continuity tests for both functional

directions gave similar statistics.

V. DATA ANALYSIS

Data from these experiments were a set of 8 time series of length 200,000 points. We

front-truncated the data by 10,000 points to allow for chaotic transients, and then used the

next 80,000 points (a data limitation because of computer memory and speed constraints).

We embedded the 8 time series in a 16-dimensional space, using 2 time-delays per time

series. The embedding dimension was determined by using a false-nearest neighbor analysis

[8] on all 8 time series. The false-nearest neighbor analysis has been used for determination

of embedding dimension for multivariate data by Boccaletti et al[4]. However, in that case

the time series were weakly coupled. In our case the time series were strongly coupled via

the drive signal. The scheme in [4] was adaptive, in that dimensions were only increased

when false near neighbors were found. We adopted a non-adaptive scheme, testing all

possibilities for combinations of time series. Because our time series were strongly coupled,

it was conjectured that the adaptive scheme might be susceptible to coupling e�ects between

time series. This could cause the adaptive false-near neighbors routine to omit a time series.
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The result of this could be an incomplete investigation of embedding dimension. Thus, we

investigate embeddings starting with dimension 1 and ending with dimension 24.

We have 8 time series from which we construct d�dimensional delay vectors. For a 1-

dimensional embedding, we construct 1-dimensional vectors from a single time series sj(t).

For 2-dimensional vectors we use another time series sk(t) for the second component of the

vector. To further increase the delay to dimensions d with 1 � d � 8, we add additional

time series. An 8-dimensional time-delay vector looks like (s1; : : : ; s8).

For dimensions d > 8, we we add delays in constructing the vector. One example is

(s1(t); : : : ; s3(t); s3(t + � ); : : : ; s8(t)): To create embedded vectors of dimension d > 9, we

continue to add delayed time series sj(t + � ) (and in dimensions > 16, sj(t + 2� )) as new

components for the vector.

We used the autocorrelation function on all 8 time series to �nd an appropriate time delay.

We used a time-delay window of 30 time steps. This corresponded to an approximately 2/3

loss of autocorrelation for the time series output by the oscillators at the driven end of the

undamaged circuit. Because the autocorrelation delays for the output of the oscillators at

the �xed end of the system were much longer (� 150 time steps), we used the shorter delay

times of the driven end. In a multivariate time series embedding with all output values

synchronized with the input signal, the same delay must be used for each time series. Using

di�erent delays would have the same e�ect as sampling randomly through the time series

for each embedded vector in a univariate embedding.

In order to exclude spatially correlated points that are also correlated in time, we exam-

ined the drive signal for the length of an average oscillation. We found this to be 30 time

steps. We then employed a Theiler (see [13]) window of length 30 time steps in the search

for nearest-neighbor points in the continuity test.

The data were normalized and de-meaned before embedding. In order to facilitate range

searches in the 16-dimensional space, we adapted a kd-tree range search algorithm (see e.g.

[2, 3]) to the multivariate embedding. This allowed us to perform each continuity test in

about 3 minutes for 100 representative points on the attractor using a 265 MHz G3 processor

with 384 MB of memory.

With the 10 data sets for the circuit at damage level 0, we performed 20 source-target

combinations of the continuity test in order to determine �0 and distribution of �� values

between attractors reconstructed from an undamaged circuit's output. We then performed
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the continuity test between an undamaged circuit's output as the source and a damaged

circuit's output as the target to obtain the average �* and distribution of �* for 10 source-

target pairs with each level of damage.

In order to assure that the continuity test is a two-way test, we also performed the test

for damaged-to-undamaged source-target pairs. These results were similar to those obtained

for the undamaged-to-damaged and appear in �gure 10.

VI. RESULTS

We summarize the results in �gures 7-9. Figure 7 shows the average �*is larger when there

is 2% damage than the average �* for no damage. We see that the lower end of the 95%

con�dence interval for the 2% damage scenario is close to the average �* for the undamaged

scenario. The 4% damage shows a similar increase in �* over that of the undamaged scenario.

The 95% con�dence intervals for the damage scenarios are also larger than that from the

undamaged scenario; in the damage of 6% or more, the interval has more than tripled in size.

The evidence of damage is even more striking when we consider the probability distributions

seen in �gures 8 and 9. The distributions are drawn from 10 runs of the continuity test, each

run using a di�erent combination of output from the undamaged circuit and the damaged

circuit. We see spreading of the entire probability distribution of �* as well as clear movement

in the location of the peak of the distribution with increasing damage.

We note that although there is a clear di�erence between the probability distribution for

the undamaged and the 2% damage, there is not a large di�erence between those of the 2%

and 4% damage and between 6% and 8% damage. Although the resistors only have a (1%)

accuracy in their labelling , the discrepancy does not completely explain this phenomenon.

More investigation into both the closeness of the distributions of the 2% and 4% and of the

6% and 8% as well as the apparent jump between 4% and 6% damage is warranted.

It is noteworthy that there is a clearly identi�able change in the nature of the function 	

even with only 2% change in the circuit. Damage in the 10% scenario was overwhelmingly

obvious - we saw a large change in the peak and spread of the probability distribution of

the �* values for the undamaged-to-undamaged 	 vs. the undamaged-to-damaged 	. This

points to a loss of continuity/di�erentiability. We also saw incremental (although not linear)

change in the nature of 	 corresponding to incremental changes in the circuit. Note that
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FIG. 7: Changes in average �* with damage. Maps from undamaged to damaged reconstructions.

by the 95% con�dence intervals on �gure 7 that the continuity test did not indicate any

damage existed in any of the undamaged circuits. This was reected in tight distributions

with small variance in �* along with small �*. Variances for the �* in the continuity test

from undamaged to damaged are listed in table 11.

VII. CONCLUSION

This method of damage detection was extremely sensitive to damage, while at the same

time giving consistent results when no damage was present. We saw an incremental change

in our statistic with changes in damage, indicating that the method may possibly be used

for prognostics as well as diagnostics.

The damage in this structure was con�ned to one location. Thus, no localization study

was possible. A study is currently in progress in which we analyze data from circuits that

have the same level of damage in the coupling between di�erent oscillators.

One advantage to this method over current vibrational methods such as described in [6]

is that no damage- or structure-speci�c model is necessary to use this test. The data provide
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tions.
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FIG. 9: Distributions of �* in the Continuity Test. Maps from undamaged to damaged reconstruc-

tions.
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FIG. 10: Changes in average �* in the Continuity Test for Maps from damaged to undamaged

reconstructions
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FIG. 11: Variance in �* for various damage levels. Mapping between undamaged and damaged

circuit at indicated level.

the model. To arrive at the baseline �*, one interrogates a pristine structure. Changes in the

distribution of �* indicate change in the sti�ness of the structure. The particular damage

mechanism does not need to be known in order to detect damage. Using data from multiple

sensors, it is possible to localize damage as in [15]; it also may be possible to characterize
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various kinds of damage by looking at the maps between attractors reconstructed from

individual sensors' data.
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